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Definition

A hyperkihler manifold X is called hyperkihler manifold of K3l"l-type if X is
deformation equivalent to a Hilbert scheme of n points Sl of some projective K3
surface S.
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Let X be a hyperkihler of K3["l—type. Denote by Ax = H2(X,Z)V /H?(X,Z) the
discriminant group of H2(X,Z).There are natural maps

Bir(X) — O(H?*(X, 7)) and O(H?(X,Z)) - O(Ax)(22 (Z/2Z)")

for some r > 0.

Marl

[ = 0 The Monodromy group Mon?(X) is equal to the subgroup of O(H2(X,Z))*
actlng by Id or —Id in Ax.

Let g be symplectic birational map (i.e., g‘* ao = Id)

[Mon16] A finite subgroup G C O(H?(X,Z)) is induced by a symplectic automorphism

subgroup iff
> (H?(X,Z)%)* is non degenerate and negative definite;
> (H?(X,Z)%)* contains no numerical wall divisors;

> G acts trivially on Ax.
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Results

Theorem

Let X be a projective hyperkihler manifold of K3["l—type admitting a symplectic
birational map of finite order with a non—trivial action on Ax. Then, X is birational of
a moduli space of (twisted) sheaves on a K3 surface.

BM14
B X is isomorphic to a moduli space M4 (S, v, «) of o—stable objects on a

(twisted) K3 surface (S, a) with respect to a stability condition o € Stab™(S).

Set M = My(v) be the moduli space of H—(Gieseker) stable sheaves on a K3 surface
S, which is birational to X in the previous theorem, with Mukai vector v = (r, cH, s):

Theorem (DMP)

Suppose that S is a general K3 surface. Let R, € O(NS(M)). There exists an
involution ¢, € Bir(M) symplectic with ¢ = —Id on Ax iff v satisfies

> r|2c, ged(r,s) =1 or 2;
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H%(S,7):

H(S)%2 := H%2(S) = H2.0(S) =: H(5)20°
H(S)E .= HO(S) @ HYL(S) @ HA(S).
The normalized Hilbert polynomial of a torsion free coherent sheaf F is

_ X(F@H")

prF(n) = = ——

A torsion free coherent sheaf F is stable (resp. semistable) if py ¢(n) < py,z(n)

(resp. pH,e(n) < pu,F(n)) for all proper subsheaves £ C F and n>> 0.

Let F be a stable sheaf on (S, H). The Mukai vector associated to F is given by

a(F)?
2

(rkF, c1(F), — &2(F) + rkF).
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Gie77
[ é ] Mpy(v) is a quasi—projective scheme.
If My(v) is not already compact, then one can compactify by adding H—semistable

sheaves and obtain a new moduli space My (v) such that it is projective and
My (v) C My(v) is open.

Theorem ([Muk87], [GH96], [0'G97], [Yos01])

Let S be a projective K3 surface, v be a primitive Mukai vector with (v - v)? > —2,
and H be a v—general ample class. The moduli space My(v) of (Gieseker) H-stable
sheaves on S with class v is a smooth projective hyperkihler manifold of K3"-type
with 2n = (v - v) + 2.

Theorem (Addington, Huybrechts [Huy17])

Let X be a HK manifold of K3\"—type. Then, X has the period of a moduli space on
a twisted K3 surface if and only if there exists an embedding

U(m) —— Ka,g for some m # 0.
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Some properties of symplectic birational maps:
» The order of g is even.
> There exists a class § € H?(X,Z) with 62 = —2(n — 1) where
g8 =—-0+2(n—1)w and w € H%(X,Z).

> Set A be the extension of lattices and 2-weight Hodge structures of H2(X,Z)

that is isometric to U* @ Eg. There exists a unique extension of g* on A such
that g = -—-1:
lax

g*v = —v where v is the generator of H?(X,Z)! C A.

> Sg(X) & (v) C Sy (A) and signSg« (A) is (1,r) where r is the rank of Sg+ (X).
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Note that Sg« (K) is~hyperbo|ic but not always 2—e|emen£ary. Let us suppose that
ord(g) = 2X. Since A is an unimodular lattice and Sy« (A) is a primitive sublattice of
A, the discriminant group A, L) S isomorphic to A/(A8" @ Sy« (A)) which is

g

2k_torsion, and so

As .y = (2/20)7 © (2/20)2 & ... & (2/2°T)°, (1)

where | := I(AS *(K)) =a1+ ...+ ax <1+ rand at least oy > 0. This implies that
g

S (A) is unique in its genus. Moreover, the co-invariant lattice Sg* (A) can be

splitting as L& Q where A is a 2—elementary lattice and Q is a lattice of signature
(0,r —1): if I <r, then [(AQ) </ <rkQ, andso Sgx(N) = U Q; if I=r,r+1, we

obtain /| =2 <r—1=rkQ, and so Sg« (K) >~ U(2)® Q or
SN =)@ (-2)8Q. O
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Set M = My(v)be a moduli space of H—stable sheaves on a K3 surface S (birational
model of X).
In NS(M)g, the convex cones

Mov(M) = { div classes with base locus of cod > 2}

Amp(M) = (ample div classes ) C Mov(M)

Nef (M) := Amp(M) C Mov (M)

Remark: Any birational map ¢ : M --» M’ induces a Hodge isometry preserving the
Movable cones. Moreover, if the induced Hodge isometry satisfies
¢*(Nef(M")) N Amp(M) is non—empty, then ¢ can be extended to an isomorphism.

Hass:/';sch: MOV(M) — Uqb:M’——-)M d)*(Nef(M/)).
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Wall—crossing in the space of the stability conditions

Theorem ([BM14])

Let v be a primitive Mukai vector.

1. Given 0,7 € Stab™(S) generic, the two moduli spaces My(v) and M, (v) of
Bridgeland-stable objects are birational to each other.

2. Fix a (generic) base point o € Stab*(S). Every smooth birational model of
M, (v) appears as a moduli space M (v) for some T € Stab™(S).

There exists a map / : Stab™(S) — NS(M,(v)), such that for any chamber

C C Stab™(S) and 7 € C we have I(C) = Amp(M-(v)). Given a wall W for v and o9
a generic stability condition on the wall, let o+, 0_ be two generic stability conditions
nearby W in opposite chambers.

Theorem ([BM14])

There exists birational contractions
af M, — M
: Mo (v) +

where M+ are normal irreducible projective varieties. The curves contracted by =% are
precisely the curves of objects that are S-equivalent to each other with respect to og.
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The type of birational transformation are described as follows.

Definition
A wall W is called

1.

a fake wall if there are no curves in My (v) of objects that are S-equivalent to
each other with respect to oo,

2. a totally semistable wall if M3t (v) =0,

3. a flopping wall if we can identify M, = M_ and the induced map My, --» My, _

induces a flopping contraction,

. a divisorial wall if the morphisms == : Mo (v) — M are both divisorial

contractions.
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Assume M ~ M, (S, v) for a general K3 surface S, o € Stab™(S).Denote v = (r, 0, s)

a Mukai vector of S with r,s € Z and 6 € NS(S). For convenience we denote 6 = cD
with ¢ € Z and D primitive.

Lemma
The reflection Re belongs to Mon?(M) with Re |a,,= —1 if and only if

r|2c and ged(r,s) =1 or2, (%)

As a consequence,

» A potential wall is either divisorial or a flopping wall.
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Proposition
Under the conditions (x), the vertical wall is a divisorial wall if and only if one of the
following cases occurs.
> r=1,r=2o0rc=kr ands=(D?/2)k?r — m for some k € Z and m =1 or 2.
> r > 2, r{c, and one of the two possibilities occurs.

D? D?
1. H> =0 (mod 4), v = (2a, baD, — b%*a — 1) and w = (2, bD, — b?) for some
4 4
integers a > 2, b odd.
D?b%a — 2 D?
2. H? =2 (mod 4), v = (2a, baD, Ta) and w = (4,2bD, sz) for some
integers a > 2 odd, b odd.
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