
D
ra
ft

HYPERKÄHLER MANIFOLDS OF K3[n]–TYPE
ADMITTING SYMPLECTIC BIRATIONAL MAPS

Yulieth Prieto–Montañez
a work in progress with Y. Dutta and D. Mattei

Spring School on Invariants in Algebraic Geometry

Institut de Mathématiques de Bourgogne

May 19, 2022



D
ra
ft

Layout

Part I: Main definitions
I Hyperkähler manifolds and symplectic maps: HK manifolds of K3[n]–type.
I Moduli spaces of (twisted) sheaves on K3 surfaces.

Part II: Problem and main results
I HK manifolds of K3[n]–type with symplectic birational maps.
I Reflections along the vertical wall in the space of stability conditions.



D
ra
ft

Definitions and Examples

A hyperkähler manifold (HK) X is a compact Kähler manifold/C

I simply connected;
I admitting a unique non–degenerate holomorphic 2–form ωX .

Examples:
I (dim = 2) K3 surfaces: Kummer surfaces, double coverings of P2 branched along

smooth curve of degree six, smooth quartics in P3.
I (dim = 2n) Hilbert scheme of n points of K3 surfaces, Generalized Kummer

varieties.
I (dim = 6): The O’Grady’s 6–dimensional example.
I (dim = 10): The O’Grady’s 10–dimensional example.
I (dim = 2n): Some moduli spaces of sheaves on K3 surfaces.

Definition
A hyperkähler manifold X is called hyperkähler manifold of K3[n]–type if X is
deformation equivalent to a Hilbert scheme of n points S [n] of some projective K3
surface S .
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Theorem ([Bea83], [Fuj88])
Let X be a hyperkähler manifold of dimension 2n. Then there exists an integral
non-degenerate quadratic form qX on H2(X ,Z) of signature (3, b2(X )− 3) and a
positive constant cX such that∫

X
αn = cXqX (α)2n, ∀α ∈ H2(X ,Z).

X cX H2(X ,Z)

S [n] 1 U⊕3 ⊕ E⊕2
8 ⊕ 〈−2(n − 1)〉

Kn(A) n+1 U⊕3 ⊕ 〈−2(n + 1)〉

OG’10 1 U⊕3 ⊕ E⊕2
8 ⊕ A2

OG’6 4 U⊕3 ⊕ (−2)⊕2
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HK manifolds of K3[n]–type

Let X be a hyperkähler of K3[n]–type. Denote by AX = H2(X ,Z)∨/H2(X ,Z) the
discriminant group of H2(X ,Z).There are natural maps

Bir(X ) −→ O(H2(X ,Z)) and O(H2(X ,Z))� O(AX )(∼= (Z/2Z)r )

for some r > 0.
[Mar10]

=⇒ The Monodromy group Mon2(X ) is equal to the subgroup of O(H2(X ,Z))+

acting by Id or −Id in AX .
Let g be symplectic birational map (i.e., g∗|

H2,0
= Id)

[Mon16]
=⇒ A finite subgroup G ⊂ O(H2(X ,Z)) is induced by a symplectic automorphism

subgroup iff
I (H2(X ,Z)G )⊥ is non degenerate and negative definite;
I (H2(X ,Z)G )⊥ contains no numerical wall divisors;
I G acts trivially on AX .
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Question (A)
Does X admit a symplectic birational map with a non–trivial action on AX ?

Suppose X admits a symplectic birational map g such that g∗|AX
= −1.

Question (B)
Does there exist a birational involution ι such that g = ι ◦ f with ι∗ = Re a reflection
map on a class in cohomology, ι∗|AX

= −1 and f ∗|AX
= 1?
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Results

Theorem
Let X be a projective hyperkähler manifold of K3[n]–type admitting a symplectic
birational map of finite order with a non–trivial action on AX . Then, X is birational of
a moduli space of (twisted) sheaves on a K3 surface.

[BM14]
=⇒ X is isomorphic to a moduli space Mσ(S, v , α) of σ–stable objects on a

(twisted) K3 surface (S, α) with respect to a stability condition σ ∈ Stab+(S).

Set M = MH(v) be the moduli space of H–(Gieseker) stable sheaves on a K3 surface
S , which is birational to X in the previous theorem, with Mukai vector v = (r , cH, s):

Theorem (DMP)
Suppose that S is a general K3 surface. Let Rv ∈ O(NS(M)). There exists an
involution ιv ∈ Bir(M) symplectic with ι∗v = −Id on AX iff v satisfies
I r |2c, gcd(r , s) = 1 or 2;
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Moduli space of sheaves on K3 surfaces

The Mukai lattice of a K3 surface S is defined as

H̃(S,Z) = H0(S ,Z)⊕ H2(S ,Z)⊕ H4(S ,Z),

with the pairing
((r , l , s) · (r ′, l ′, s′)) = −rs′ + (l · l ′)− sr ′.

One can give it a Hodge structure of weight 2 induced by the Hodge structure of
H2(S ,Z):

H̃(S)0,2 := H0,2(S) ∼= H2,0(S) =: H̃(S)2,0

H̃(S)1,1 := H0(S)⊕ H1,1(S)⊕ H4(S).

The normalized Hilbert polynomial of a torsion free coherent sheaf F is

pH,F (n) =
χ(F ⊗ Hn)

rkF
.

A torsion free coherent sheaf F is stable (resp. semistable) if pH,E(n) < pH,F (n)
(resp. pH,E(n) ≤ pH,F (n)) for all proper subsheaves E ⊂ F and n� 0.
Let F be a stable sheaf on (S ,H). The Mukai vector associated to F is given by

(rkF , c1(F),
c1(F)2

2
− c2(F) + rkF).



D
ra
ft

Moduli space of sheaves on K3 surfaces
The Mukai lattice of a K3 surface S is defined as

H̃(S,Z) = H0(S ,Z)⊕ H2(S ,Z)⊕ H4(S ,Z),

with the pairing
((r , l , s) · (r ′, l ′, s′)) = −rs′ + (l · l ′)− sr ′.

One can give it a Hodge structure of weight 2 induced by the Hodge structure of
H2(S ,Z):

H̃(S)0,2 := H0,2(S) ∼= H2,0(S) =: H̃(S)2,0

H̃(S)1,1 := H0(S)⊕ H1,1(S)⊕ H4(S).

The normalized Hilbert polynomial of a torsion free coherent sheaf F is

pH,F (n) =
χ(F ⊗ Hn)

rkF
.

A torsion free coherent sheaf F is stable (resp. semistable) if pH,E(n) < pH,F (n)
(resp. pH,E(n) ≤ pH,F (n)) for all proper subsheaves E ⊂ F and n� 0.
Let F be a stable sheaf on (S ,H). The Mukai vector associated to F is given by

(rkF , c1(F),
c1(F)2

2
− c2(F) + rkF).



D
ra
ft

Moduli space of sheaves on K3 surfaces
The Mukai lattice of a K3 surface S is defined as

H̃(S,Z) = H0(S ,Z)⊕ H2(S ,Z)⊕ H4(S ,Z),

with the pairing
((r , l , s) · (r ′, l ′, s′)) = −rs′ + (l · l ′)− sr ′.

One can give it a Hodge structure of weight 2 induced by the Hodge structure of
H2(S ,Z):

H̃(S)0,2 := H0,2(S) ∼= H2,0(S) =: H̃(S)2,0

H̃(S)1,1 := H0(S)⊕ H1,1(S)⊕ H4(S).

The normalized Hilbert polynomial of a torsion free coherent sheaf F is

pH,F (n) =
χ(F ⊗ Hn)

rkF
.

A torsion free coherent sheaf F is stable (resp. semistable) if pH,E(n) < pH,F (n)
(resp. pH,E(n) ≤ pH,F (n)) for all proper subsheaves E ⊂ F and n� 0.
Let F be a stable sheaf on (S ,H). The Mukai vector associated to F is given by

(rkF , c1(F),
c1(F)2

2
− c2(F) + rkF).



D
ra
ft

Moduli space of sheaves on K3 surfaces
The Mukai lattice of a K3 surface S is defined as

H̃(S,Z) = H0(S ,Z)⊕ H2(S ,Z)⊕ H4(S ,Z),

with the pairing
((r , l , s) · (r ′, l ′, s′)) = −rs′ + (l · l ′)− sr ′.

One can give it a Hodge structure of weight 2 induced by the Hodge structure of
H2(S ,Z):

H̃(S)0,2 := H0,2(S) ∼= H2,0(S) =: H̃(S)2,0

H̃(S)1,1 := H0(S)⊕ H1,1(S)⊕ H4(S).

The normalized Hilbert polynomial of a torsion free coherent sheaf F is

pH,F (n) =
χ(F ⊗ Hn)

rkF
.

A torsion free coherent sheaf F is stable (resp. semistable) if pH,E(n) < pH,F (n)
(resp. pH,E(n) ≤ pH,F (n)) for all proper subsheaves E ⊂ F and n� 0.
Let F be a stable sheaf on (S ,H). The Mukai vector associated to F is given by

(rkF , c1(F),
c1(F)2

2
− c2(F) + rkF).



D
ra
ft

Moduli space of sheaves on K3 surfaces
The Mukai lattice of a K3 surface S is defined as

H̃(S,Z) = H0(S ,Z)⊕ H2(S ,Z)⊕ H4(S ,Z),

with the pairing
((r , l , s) · (r ′, l ′, s′)) = −rs′ + (l · l ′)− sr ′.

One can give it a Hodge structure of weight 2 induced by the Hodge structure of
H2(S ,Z):

H̃(S)0,2 := H0,2(S) ∼= H2,0(S) =: H̃(S)2,0

H̃(S)1,1 := H0(S)⊕ H1,1(S)⊕ H4(S).

The normalized Hilbert polynomial of a torsion free coherent sheaf F is

pH,F (n) =
χ(F ⊗ Hn)

rkF
.

A torsion free coherent sheaf F is stable (resp. semistable) if pH,E(n) < pH,F (n)
(resp. pH,E(n) ≤ pH,F (n)) for all proper subsheaves E ⊂ F and n� 0.

Let F be a stable sheaf on (S ,H). The Mukai vector associated to F is given by

(rkF , c1(F),
c1(F)2

2
− c2(F) + rkF).



D
ra
ft

Moduli space of sheaves on K3 surfaces
The Mukai lattice of a K3 surface S is defined as

H̃(S,Z) = H0(S ,Z)⊕ H2(S ,Z)⊕ H4(S ,Z),

with the pairing
((r , l , s) · (r ′, l ′, s′)) = −rs′ + (l · l ′)− sr ′.

One can give it a Hodge structure of weight 2 induced by the Hodge structure of
H2(S ,Z):

H̃(S)0,2 := H0,2(S) ∼= H2,0(S) =: H̃(S)2,0

H̃(S)1,1 := H0(S)⊕ H1,1(S)⊕ H4(S).

The normalized Hilbert polynomial of a torsion free coherent sheaf F is

pH,F (n) =
χ(F ⊗ Hn)

rkF
.

A torsion free coherent sheaf F is stable (resp. semistable) if pH,E(n) < pH,F (n)
(resp. pH,E(n) ≤ pH,F (n)) for all proper subsheaves E ⊂ F and n� 0.
Let F be a stable sheaf on (S ,H). The Mukai vector associated to F is given by

(rkF , c1(F),
c1(F)2

2
− c2(F) + rkF).



D
ra
ft

Set v ∈ H̃(S ,Z) be a Mukai vector.

Let H be a v–general ample class.

MH(v) := moduli space of H–stable sheaves on S with Mukai vector v .

[Gie77]
=⇒ MH(v) is a quasi–projective scheme.

If MH(v) is not already compact, then one can compactify by adding H–semistable
sheaves and obtain a new moduli space M̄H(v) such that it is projective and
MH(v) ⊂ M̄H(v) is open.

Theorem ([Muk87], [GH96], [O’G97], [Yos01])
Let S be a projective K3 surface, v be a primitive Mukai vector with (v · v)2 ≥ −2,
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How to get moduli spaces

Some properties of symplectic birational maps:
I The order of g is even.
I There exists a class δ ∈ H2(X ,Z) with δ2 = −2(n − 1) where

g∗δ = −δ + 2(n − 1)w and w ∈ H2(X ,Z).

I Set Λ̃ be the extension of lattices and 2–weight Hodge structures of H2(X ,Z)

that is isometric to U4 ⊕ E2
8 . There exists a unique extension of g∗ on Λ̃ such

that g∗|AX
= −1:

g∗v = −v where v is the generator of H2(X ,Z)⊥ ⊂ Λ̃.

I Sg∗ (X )⊕ 〈v〉 ⊂ Sg∗ (Λ̃) and signSg∗ (Λ̃) is (1, r) where r is the rank of Sg∗ (X ).
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(sketch proof) Theorem I.
Note that Sg∗ (Λ̃) is hyperbolic but not always 2-elementary.

Let us suppose that
ord(g) = 2k . Since Λ̃ is an unimodular lattice and Sg∗ (Λ̃) is a primitive sublattice of
Λ̃, the discriminant group A

Sg∗ (Λ̃)
is isomorphic to Λ̃/(Λ̃g∗ ⊕ Sg∗ (Λ̃)) which is

2k–torsion, and so

A
Sg∗ (Λ̃)

∼= (Z/2Z)α1 ⊕ (Z/22Z)α2 ⊕ ...⊕ (Z/2kZ)αk , (1)

where l := l(A
Sg∗ (Λ̃)

) = α1 + ...+ αk ≤ 1 + r and at least αk > 0. This implies that

Sg∗ (Λ̃) is unique in its genus. Moreover, the co–invariant lattice Sg∗ (Λ̃) can be
splitting as L̃⊕ Q where Λ̃ is a 2–elementary lattice and Q is a lattice of signature
(0, r − 1): if l < r , then l(AQ) ≤ l ≤ rkQ, and so Sg∗ (Λ̃) ∼= U ⊕ Q; if l = r , r + 1, we
obtain l − 2 ≤ r − 1 = rkQ, and so Sg∗ (Λ̃) ∼= U(2)⊕ Q or
Sg∗ (Λ̃) ∼= 〈2〉 ⊕ 〈−2〉 ⊕ Q.
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Reflections in moduli spaces

Set M = MH(v)be a moduli space of H–stable sheaves on a K3 surface S (birational
model of X ).

In NS(M)R, the convex cones

Mov(M) = { div classes with base locus of cod ≥ 2}

Amp(M) = 〈ample div classes 〉 ⊂ Mov(M)

Nef (M) := Amp(M) ⊂ Mov(M)

Remark: Any birational map φ : M 99K M′ induces a Hodge isometry preserving the
Movable cones. Moreover, if the induced Hodge isometry satisfies
φ∗(Nef (M′)) ∩ Amp(M) is non–empty, then φ can be extended to an isomorphism.

Hass/Tsch
=⇒ : Mov(M) =

⋃
φ:M′99KM φ∗(Nef (M′)).
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Wall–crossing in the space of the stability conditions

Theorem ([BM14])
Let v be a primitive Mukai vector.

1. Given σ, τ ∈ Stab+(S) generic, the two moduli spaces Mσ(v) and Mτ (v) of
Bridgeland-stable objects are birational to each other.

2. Fix a (generic) base point σ ∈ Stab+(S). Every smooth birational model of
Mσ(v) appears as a moduli space Mτ (v) for some τ ∈ Stab+(S).

There exists a map l : Stab+(S)→ NS(Mσ(v)), such that for any chamber
C ⊂ Stab+(S) and τ ∈ C we have l(C) = Amp(Mτ (v)). Given a wall W for v and σ0
a generic stability condition on the wall, let σ+, σ− be two generic stability conditions
nearby W in opposite chambers.

Theorem ([BM14])
There exists birational contractions

π± : Mσ± (v)→ M±

where M± are normal irreducible projective varieties. The curves contracted by π± are
precisely the curves of objects that are S-equivalent to each other with respect to σ0.



D
ra
ft

Wall–crossing in the space of the stability conditions

Theorem ([BM14])
Let v be a primitive Mukai vector.

1. Given σ, τ ∈ Stab+(S) generic, the two moduli spaces Mσ(v) and Mτ (v) of
Bridgeland-stable objects are birational to each other.

2. Fix a (generic) base point σ ∈ Stab+(S). Every smooth birational model of
Mσ(v) appears as a moduli space Mτ (v) for some τ ∈ Stab+(S).

There exists a map l : Stab+(S)→ NS(Mσ(v)), such that for any chamber
C ⊂ Stab+(S) and τ ∈ C we have l(C) = Amp(Mτ (v)). Given a wall W for v and σ0
a generic stability condition on the wall, let σ+, σ− be two generic stability conditions
nearby W in opposite chambers.

Theorem ([BM14])
There exists birational contractions

π± : Mσ± (v)→ M±

where M± are normal irreducible projective varieties. The curves contracted by π± are
precisely the curves of objects that are S-equivalent to each other with respect to σ0.



D
ra
ft

Wall–crossing in the space of the stability conditions

Theorem ([BM14])
Let v be a primitive Mukai vector.

1. Given σ, τ ∈ Stab+(S) generic, the two moduli spaces Mσ(v) and Mτ (v) of
Bridgeland-stable objects are birational to each other.

2. Fix a (generic) base point σ ∈ Stab+(S). Every smooth birational model of
Mσ(v) appears as a moduli space Mτ (v) for some τ ∈ Stab+(S).

There exists a map l : Stab+(S)→ NS(Mσ(v)), such that for any chamber
C ⊂ Stab+(S) and τ ∈ C we have l(C) = Amp(Mτ (v)). Given a wall W for v and σ0
a generic stability condition on the wall, let σ+, σ− be two generic stability conditions
nearby W in opposite chambers.

Theorem ([BM14])
There exists birational contractions

π± : Mσ± (v)→ M±

where M± are normal irreducible projective varieties. The curves contracted by π± are
precisely the curves of objects that are S-equivalent to each other with respect to σ0.



D
ra
ft

Wall–crossing in the space of the stability conditions

Theorem ([BM14])
Let v be a primitive Mukai vector.

1. Given σ, τ ∈ Stab+(S) generic, the two moduli spaces Mσ(v) and Mτ (v) of
Bridgeland-stable objects are birational to each other.

2. Fix a (generic) base point σ ∈ Stab+(S). Every smooth birational model of
Mσ(v) appears as a moduli space Mτ (v) for some τ ∈ Stab+(S).

There exists a map l : Stab+(S)→ NS(Mσ(v)), such that for any chamber
C ⊂ Stab+(S) and τ ∈ C we have l(C) = Amp(Mτ (v)).

Given a wall W for v and σ0
a generic stability condition on the wall, let σ+, σ− be two generic stability conditions
nearby W in opposite chambers.

Theorem ([BM14])
There exists birational contractions

π± : Mσ± (v)→ M±

where M± are normal irreducible projective varieties. The curves contracted by π± are
precisely the curves of objects that are S-equivalent to each other with respect to σ0.



D
ra
ft

Wall–crossing in the space of the stability conditions

Theorem ([BM14])
Let v be a primitive Mukai vector.

1. Given σ, τ ∈ Stab+(S) generic, the two moduli spaces Mσ(v) and Mτ (v) of
Bridgeland-stable objects are birational to each other.

2. Fix a (generic) base point σ ∈ Stab+(S). Every smooth birational model of
Mσ(v) appears as a moduli space Mτ (v) for some τ ∈ Stab+(S).

There exists a map l : Stab+(S)→ NS(Mσ(v)), such that for any chamber
C ⊂ Stab+(S) and τ ∈ C we have l(C) = Amp(Mτ (v)). Given a wall W for v and σ0
a generic stability condition on the wall, let σ+, σ− be two generic stability conditions
nearby W in opposite chambers.

Theorem ([BM14])
There exists birational contractions

π± : Mσ± (v)→ M±

where M± are normal irreducible projective varieties. The curves contracted by π± are
precisely the curves of objects that are S-equivalent to each other with respect to σ0.



D
ra
ft

Wall–crossing in the space of the stability conditions

Theorem ([BM14])
Let v be a primitive Mukai vector.

1. Given σ, τ ∈ Stab+(S) generic, the two moduli spaces Mσ(v) and Mτ (v) of
Bridgeland-stable objects are birational to each other.

2. Fix a (generic) base point σ ∈ Stab+(S). Every smooth birational model of
Mσ(v) appears as a moduli space Mτ (v) for some τ ∈ Stab+(S).

There exists a map l : Stab+(S)→ NS(Mσ(v)), such that for any chamber
C ⊂ Stab+(S) and τ ∈ C we have l(C) = Amp(Mτ (v)). Given a wall W for v and σ0
a generic stability condition on the wall, let σ+, σ− be two generic stability conditions
nearby W in opposite chambers.

Theorem ([BM14])
There exists birational contractions

π± : Mσ± (v)→ M±

where M± are normal irreducible projective varieties. The curves contracted by π± are
precisely the curves of objects that are S-equivalent to each other with respect to σ0.



D
ra
ftThe type of birational transformation are described as follows.

Definition
A wall W is called

1. a fake wall if there are no curves in Mσ± (v) of objects that are S-equivalent to
each other with respect to σ0,

2. a totally semistable wall if Mst
σ0 (v) = ∅,

3. a flopping wall if we can identify M+ = M− and the induced map Mσ+ 99K Mσ−
induces a flopping contraction,

4. a divisorial wall if the morphisms π± : Mσ± (v)→ M± are both divisorial
contractions.
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a Mukai vector of S with r , s ∈ Z and θ ∈ NS(S). For convenience we denote θ = cD
with c ∈ Z and D primitive.

Lemma
The reflection Re belongs to Mon2(M) with Re |AM

= −1 if and only if

r | 2c and gcd(r , s) = 1 or 2, (∗)

As a consequence,
I A potential wall is either divisorial or a flopping wall.
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Under the conditions (∗), the vertical wall is a divisorial wall

if and only if one of the
following cases occurs.
I r = 1, r = 2 or c = kr and s = (D2/2)k2r −m for some k ∈ Z and m = 1 or 2.
I r > 2, r - c, and one of the two possibilities occurs.

1. H2 ≡ 0 (mod 4), v = (2a, baD,
D2

4
b2a − 1) and w = (2, bD,

D2

4
b2) for some

integers a ≥ 2, b odd.

2. H2 ≡ 2 (mod 4), v = (2a, baD,
D2b2a − 2

4
) and w = (4, 2bD,

D2

2
b2) for some

integers a ≥ 2 odd, b odd.
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Examples

Let S be a K3 surface of Pic(S) = 〈H〉. Set r , s ∈ Z, gcd(r , s) = 1:
I r = 1: In this case, X = MH(1, 0,−s) = S [1+s] and e = [E ]/2 where E ⊂ S [1+s]

is the diagonal, so E corresponds to the prime divisor which is the exceptional
locus of the Hilbert–Chow morphism ε : S [1+s] −→ S(1+s).

(Divisorial)
I r = 2: In this case, e = [E ] where E ⊂ MH(2, 0,−s) is the locus of H–stable

sheaves which are not locally free, and E is a prime divisor which is the
exceptional locus of Jun Li’s morphism from MH(2, 0,−s) onto the
Uhlenbeck–Yau compactification of the moduli space of H–slope stable vector
bundles. (Divisorial)

I r ≥ 3: In this case, e = [E ] where E ⊂ MH(r , 0,−s) is the locus of H–stable
sheaves which are not locally free or not H–slope stable.Set U = X \ E the locally
free H–slope stable sheaves and ι : U −→ U the map that sends F in its dual
sheaf F∨. E is a closed subset of codimension ≥ 2 in MH(r , 0,−s) and so
ι : MH(r , 0,−s) −→ MH(r , 0,−s) is a birational involution. In particular, the
induced map ι∗ in cohomology corresponds to the reflection map Re where e is
not Q–effective, and in particular E is not a prime exceptional divisor. (Flopping
wall!!)



D
ra
ft

Examples

Let S be a K3 surface of Pic(S) = 〈H〉. Set r , s ∈ Z, gcd(r , s) = 1:
I r = 1: In this case, X = MH(1, 0,−s) = S [1+s] and e = [E ]/2 where E ⊂ S [1+s]

is the diagonal, so E corresponds to the prime divisor which is the exceptional
locus of the Hilbert–Chow morphism ε : S [1+s] −→ S(1+s). (Divisorial)

I r = 2: In this case, e = [E ] where E ⊂ MH(2, 0,−s) is the locus of H–stable
sheaves which are not locally free, and E is a prime divisor which is the
exceptional locus of Jun Li’s morphism from MH(2, 0,−s) onto the
Uhlenbeck–Yau compactification of the moduli space of H–slope stable vector
bundles. (Divisorial)

I r ≥ 3: In this case, e = [E ] where E ⊂ MH(r , 0,−s) is the locus of H–stable
sheaves which are not locally free or not H–slope stable.Set U = X \ E the locally
free H–slope stable sheaves and ι : U −→ U the map that sends F in its dual
sheaf F∨. E is a closed subset of codimension ≥ 2 in MH(r , 0,−s) and so
ι : MH(r , 0,−s) −→ MH(r , 0,−s) is a birational involution. In particular, the
induced map ι∗ in cohomology corresponds to the reflection map Re where e is
not Q–effective, and in particular E is not a prime exceptional divisor. (Flopping
wall!!)



D
ra
ft

Examples

Let S be a K3 surface of Pic(S) = 〈H〉. Set r , s ∈ Z, gcd(r , s) = 1:
I r = 1: In this case, X = MH(1, 0,−s) = S [1+s] and e = [E ]/2 where E ⊂ S [1+s]

is the diagonal, so E corresponds to the prime divisor which is the exceptional
locus of the Hilbert–Chow morphism ε : S [1+s] −→ S(1+s). (Divisorial)

I r = 2: In this case, e = [E ] where E ⊂ MH(2, 0,−s) is the locus of H–stable
sheaves which are not locally free, and E is a prime divisor which is the
exceptional locus of Jun Li’s morphism from MH(2, 0,−s) onto the
Uhlenbeck–Yau compactification of the moduli space of H–slope stable vector
bundles.

(Divisorial)
I r ≥ 3: In this case, e = [E ] where E ⊂ MH(r , 0,−s) is the locus of H–stable

sheaves which are not locally free or not H–slope stable.Set U = X \ E the locally
free H–slope stable sheaves and ι : U −→ U the map that sends F in its dual
sheaf F∨. E is a closed subset of codimension ≥ 2 in MH(r , 0,−s) and so
ι : MH(r , 0,−s) −→ MH(r , 0,−s) is a birational involution. In particular, the
induced map ι∗ in cohomology corresponds to the reflection map Re where e is
not Q–effective, and in particular E is not a prime exceptional divisor. (Flopping
wall!!)



D
ra
ft

Examples

Let S be a K3 surface of Pic(S) = 〈H〉. Set r , s ∈ Z, gcd(r , s) = 1:
I r = 1: In this case, X = MH(1, 0,−s) = S [1+s] and e = [E ]/2 where E ⊂ S [1+s]

is the diagonal, so E corresponds to the prime divisor which is the exceptional
locus of the Hilbert–Chow morphism ε : S [1+s] −→ S(1+s). (Divisorial)

I r = 2: In this case, e = [E ] where E ⊂ MH(2, 0,−s) is the locus of H–stable
sheaves which are not locally free, and E is a prime divisor which is the
exceptional locus of Jun Li’s morphism from MH(2, 0,−s) onto the
Uhlenbeck–Yau compactification of the moduli space of H–slope stable vector
bundles. (Divisorial)

I r ≥ 3: In this case, e = [E ] where E ⊂ MH(r , 0,−s) is the locus of H–stable
sheaves which are not locally free or not H–slope stable.Set U = X \ E the locally
free H–slope stable sheaves and ι : U −→ U the map that sends F in its dual
sheaf F∨. E is a closed subset of codimension ≥ 2 in MH(r , 0,−s) and so
ι : MH(r , 0,−s) −→ MH(r , 0,−s) is a birational involution. In particular, the
induced map ι∗ in cohomology corresponds to the reflection map Re where e is
not Q–effective, and in particular E is not a prime exceptional divisor. (Flopping
wall!!)



D
ra
ft

Examples

Let S be a K3 surface of Pic(S) = 〈H〉. Set r , s ∈ Z, gcd(r , s) = 1:
I r = 1: In this case, X = MH(1, 0,−s) = S [1+s] and e = [E ]/2 where E ⊂ S [1+s]

is the diagonal, so E corresponds to the prime divisor which is the exceptional
locus of the Hilbert–Chow morphism ε : S [1+s] −→ S(1+s). (Divisorial)

I r = 2: In this case, e = [E ] where E ⊂ MH(2, 0,−s) is the locus of H–stable
sheaves which are not locally free, and E is a prime divisor which is the
exceptional locus of Jun Li’s morphism from MH(2, 0,−s) onto the
Uhlenbeck–Yau compactification of the moduli space of H–slope stable vector
bundles. (Divisorial)

I r ≥ 3:

In this case, e = [E ] where E ⊂ MH(r , 0,−s) is the locus of H–stable
sheaves which are not locally free or not H–slope stable.Set U = X \ E the locally
free H–slope stable sheaves and ι : U −→ U the map that sends F in its dual
sheaf F∨. E is a closed subset of codimension ≥ 2 in MH(r , 0,−s) and so
ι : MH(r , 0,−s) −→ MH(r , 0,−s) is a birational involution. In particular, the
induced map ι∗ in cohomology corresponds to the reflection map Re where e is
not Q–effective, and in particular E is not a prime exceptional divisor. (Flopping
wall!!)



D
ra
ft

Examples

Let S be a K3 surface of Pic(S) = 〈H〉. Set r , s ∈ Z, gcd(r , s) = 1:
I r = 1: In this case, X = MH(1, 0,−s) = S [1+s] and e = [E ]/2 where E ⊂ S [1+s]

is the diagonal, so E corresponds to the prime divisor which is the exceptional
locus of the Hilbert–Chow morphism ε : S [1+s] −→ S(1+s). (Divisorial)

I r = 2: In this case, e = [E ] where E ⊂ MH(2, 0,−s) is the locus of H–stable
sheaves which are not locally free, and E is a prime divisor which is the
exceptional locus of Jun Li’s morphism from MH(2, 0,−s) onto the
Uhlenbeck–Yau compactification of the moduli space of H–slope stable vector
bundles. (Divisorial)

I r ≥ 3: In this case, e = [E ] where E ⊂ MH(r , 0,−s) is the locus of H–stable
sheaves which are not locally free or not H–slope stable.

Set U = X \ E the locally
free H–slope stable sheaves and ι : U −→ U the map that sends F in its dual
sheaf F∨. E is a closed subset of codimension ≥ 2 in MH(r , 0,−s) and so
ι : MH(r , 0,−s) −→ MH(r , 0,−s) is a birational involution. In particular, the
induced map ι∗ in cohomology corresponds to the reflection map Re where e is
not Q–effective, and in particular E is not a prime exceptional divisor. (Flopping
wall!!)



D
ra
ft

Examples

Let S be a K3 surface of Pic(S) = 〈H〉. Set r , s ∈ Z, gcd(r , s) = 1:
I r = 1: In this case, X = MH(1, 0,−s) = S [1+s] and e = [E ]/2 where E ⊂ S [1+s]

is the diagonal, so E corresponds to the prime divisor which is the exceptional
locus of the Hilbert–Chow morphism ε : S [1+s] −→ S(1+s). (Divisorial)

I r = 2: In this case, e = [E ] where E ⊂ MH(2, 0,−s) is the locus of H–stable
sheaves which are not locally free, and E is a prime divisor which is the
exceptional locus of Jun Li’s morphism from MH(2, 0,−s) onto the
Uhlenbeck–Yau compactification of the moduli space of H–slope stable vector
bundles. (Divisorial)

I r ≥ 3: In this case, e = [E ] where E ⊂ MH(r , 0,−s) is the locus of H–stable
sheaves which are not locally free or not H–slope stable.Set U = X \ E the locally
free H–slope stable sheaves and ι : U −→ U the map that sends F in its dual
sheaf F∨.

E is a closed subset of codimension ≥ 2 in MH(r , 0,−s) and so
ι : MH(r , 0,−s) −→ MH(r , 0,−s) is a birational involution. In particular, the
induced map ι∗ in cohomology corresponds to the reflection map Re where e is
not Q–effective, and in particular E is not a prime exceptional divisor. (Flopping
wall!!)



D
ra
ft

Examples

Let S be a K3 surface of Pic(S) = 〈H〉. Set r , s ∈ Z, gcd(r , s) = 1:
I r = 1: In this case, X = MH(1, 0,−s) = S [1+s] and e = [E ]/2 where E ⊂ S [1+s]

is the diagonal, so E corresponds to the prime divisor which is the exceptional
locus of the Hilbert–Chow morphism ε : S [1+s] −→ S(1+s). (Divisorial)

I r = 2: In this case, e = [E ] where E ⊂ MH(2, 0,−s) is the locus of H–stable
sheaves which are not locally free, and E is a prime divisor which is the
exceptional locus of Jun Li’s morphism from MH(2, 0,−s) onto the
Uhlenbeck–Yau compactification of the moduli space of H–slope stable vector
bundles. (Divisorial)

I r ≥ 3: In this case, e = [E ] where E ⊂ MH(r , 0,−s) is the locus of H–stable
sheaves which are not locally free or not H–slope stable.Set U = X \ E the locally
free H–slope stable sheaves and ι : U −→ U the map that sends F in its dual
sheaf F∨. E is a closed subset of codimension ≥ 2 in MH(r , 0,−s)

and so
ι : MH(r , 0,−s) −→ MH(r , 0,−s) is a birational involution. In particular, the
induced map ι∗ in cohomology corresponds to the reflection map Re where e is
not Q–effective, and in particular E is not a prime exceptional divisor. (Flopping
wall!!)



D
ra
ft

Examples

Let S be a K3 surface of Pic(S) = 〈H〉. Set r , s ∈ Z, gcd(r , s) = 1:
I r = 1: In this case, X = MH(1, 0,−s) = S [1+s] and e = [E ]/2 where E ⊂ S [1+s]

is the diagonal, so E corresponds to the prime divisor which is the exceptional
locus of the Hilbert–Chow morphism ε : S [1+s] −→ S(1+s). (Divisorial)

I r = 2: In this case, e = [E ] where E ⊂ MH(2, 0,−s) is the locus of H–stable
sheaves which are not locally free, and E is a prime divisor which is the
exceptional locus of Jun Li’s morphism from MH(2, 0,−s) onto the
Uhlenbeck–Yau compactification of the moduli space of H–slope stable vector
bundles. (Divisorial)

I r ≥ 3: In this case, e = [E ] where E ⊂ MH(r , 0,−s) is the locus of H–stable
sheaves which are not locally free or not H–slope stable.Set U = X \ E the locally
free H–slope stable sheaves and ι : U −→ U the map that sends F in its dual
sheaf F∨. E is a closed subset of codimension ≥ 2 in MH(r , 0,−s) and so
ι : MH(r , 0,−s) −→ MH(r , 0,−s) is a birational involution.

In particular, the
induced map ι∗ in cohomology corresponds to the reflection map Re where e is
not Q–effective, and in particular E is not a prime exceptional divisor. (Flopping
wall!!)



D
ra
ft

Examples

Let S be a K3 surface of Pic(S) = 〈H〉. Set r , s ∈ Z, gcd(r , s) = 1:
I r = 1: In this case, X = MH(1, 0,−s) = S [1+s] and e = [E ]/2 where E ⊂ S [1+s]

is the diagonal, so E corresponds to the prime divisor which is the exceptional
locus of the Hilbert–Chow morphism ε : S [1+s] −→ S(1+s). (Divisorial)

I r = 2: In this case, e = [E ] where E ⊂ MH(2, 0,−s) is the locus of H–stable
sheaves which are not locally free, and E is a prime divisor which is the
exceptional locus of Jun Li’s morphism from MH(2, 0,−s) onto the
Uhlenbeck–Yau compactification of the moduli space of H–slope stable vector
bundles. (Divisorial)

I r ≥ 3: In this case, e = [E ] where E ⊂ MH(r , 0,−s) is the locus of H–stable
sheaves which are not locally free or not H–slope stable.Set U = X \ E the locally
free H–slope stable sheaves and ι : U −→ U the map that sends F in its dual
sheaf F∨. E is a closed subset of codimension ≥ 2 in MH(r , 0,−s) and so
ι : MH(r , 0,−s) −→ MH(r , 0,−s) is a birational involution. In particular, the
induced map ι∗ in cohomology corresponds to the reflection map Re

where e is
not Q–effective, and in particular E is not a prime exceptional divisor. (Flopping
wall!!)



D
ra
ft

Examples

Let S be a K3 surface of Pic(S) = 〈H〉. Set r , s ∈ Z, gcd(r , s) = 1:
I r = 1: In this case, X = MH(1, 0,−s) = S [1+s] and e = [E ]/2 where E ⊂ S [1+s]

is the diagonal, so E corresponds to the prime divisor which is the exceptional
locus of the Hilbert–Chow morphism ε : S [1+s] −→ S(1+s). (Divisorial)

I r = 2: In this case, e = [E ] where E ⊂ MH(2, 0,−s) is the locus of H–stable
sheaves which are not locally free, and E is a prime divisor which is the
exceptional locus of Jun Li’s morphism from MH(2, 0,−s) onto the
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not Q–effective, and in particular E is not a prime exceptional divisor.

(Flopping
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